Category: Model Improvements Current & Ongoing Studies

Air quality models are used to predict atmospheric conditions in the future. They are based on meteorological conditions, chemistry mechanisms, and inventories of reported emissions. Models are tested for correctness by comparing their results to observed atmospheric characteristics, such as PM2.5 concentrations during high pollution periods in the past. The following studies show various ways in which models are being improved to better reflect observations of the atmosphere in Utah.

Current & Ongoing Studies

Model Map Graphic

Improving WRF/CMAQ Model Performance using Satellite Data Assimilation Technique for the Uintah Basin

This study will test if satellite observations of vegetation and land use can be used to improve photochemical model performance in the Uintah basin. An improved model will help inform emission reduction strategies and regulatory action.

  • Principal Investigators: Huy Tran, Trang Tran (USU)
  • Funded by Science for Solutions Research Grant: $38,392
Read More
Inversion Photo by Aaron Gustafson

Investigating Sources of Ammonia Uncertainty in Modeling the Salt lake City PM2.5 Nonattainment Area

This study will investigate the existing emission inventory of ammonia (NH3) sources and compare modeled NH3 concentrations to those observed during recent field studies in order to identify and correct missing NH3 sources. In addition to improving the inventory, this study will add new NH3 emission pathways to the photochemical model.

  • Principal Investigators: Chris Emery (Ramboll), Randal S. Martin (USU)
  • Funded by Science for Solutions Research Grant: $86,396
Read More