Threshold Values for Selenium in Great Salt Lake: Selections by the Science Panel

The purpose of this technical memorandum is to provide a summary and documentation of the Science Panel’s discussions relative to toxicity thresholds for exposure of birds to selenium at the Great Salt Lake. It is generally recognized that the most significant exposure of birds occurs through their diet, and that the best-documented and most readily-monitored effects are those on reproductive success (particularly egg hatchability). Thus, much of the focus of this technical memorandum is on those exposures and endpoints, because they can be most readily applied toward establishment of a site-specific water quality standard for selenium in the open waters of the Great Salt Lake.

Before the Science Panel meeting on November 29-30, 2006, I prepared a technical memorandum (Subject: Threshold Values for Selenium in Great Salt Lake; dated November 28) to provide the following:

- a summary of potential threshold values identified by Science Panel members for consideration in establishing a water quality standard for selenium in the open waters of the Great Salt Lake, and

- supporting documentation and literature provided by Panel members to be used as the basis of discussion by the Panel.

Bill Adams, Anne Fairbrother, Theresa Presser, and Joe Skorupa provided input concerning threshold values to be considered and sent supporting literature (either as citations or copies of publications), in addition to providing their views on the threshold values themselves. The entire Panel discussed that material and related information from other sources on November 30. From the available information, the Panel narrowed the ranges of values for bird diets and eggs to those listed in Tables 1 and 2 (Attachment A [tables modified from the compilation of field and laboratory data presented in Table 15 of Presser and Luoma, 2006]) and then identified “working values” for the ranges of acceptable selenium concentrations in bird diets and in bird eggs (those shaded in the tables). It is understood that the values will likely be refined during future phases of work (including consideration of site-specific
data currently being generated by the Great Salt Lake research effort) and discussion related to establishing a site-specific standard for Great Salt Lake.

A previous draft of this technical memorandum (dated December 8) provided a brief summary of the threshold values that were selected by the Panel during those discussions. For both diet and eggs, the ranges of selenium concentrations selected by the Panel are the lower and upper 95 percent confidence intervals (95% CIs; also referred to as the 5 percent lower confidence limit [LCL] and the 95 percent upper confidence limit [UCL]) for the mean selenium concentration that is associated with a 10 percent reduction (i.e., the 10 percent effect concentration or EC$_{10}$) in the hatchability of mallard eggs. Those values were reported by Ohlendorf (2003), based on the analysis of data from six laboratory studies (Heinz et al. 1987, 1989; Heinz and Hoffman 1996, 1998; Stanley et al. 1994, 1996). Essentially, there is 95 percent confidence that the mean dietary or egg selenium concentration that causes a 10 percent reduction of egg hatchability is within the identified ranges, which are illustrated in the figures below.

The Panel agreed by consensus that the 95% CIs on mean selenium concentrations in mallard diet and eggs associated with the EC$_{10}$ for egg hatchability would be reasonably protective for birds nesting at the Great Salt Lake, and that the ranges of values represented by the 95% CIs included the concentrations proposed by various Panel members for consideration. Rationale supporting selection of the 95% CIs is provided by the previous technical memorandum (dated November 28) and through discussion at the Panel meeting.

Panel members provided comments on the December 8 draft version of this technical memorandum summarizing threshold values (Attachment B), and Bill Adams provided further data analyses of effect levels in diet and eggs of mallards that are included in this revised draft. Additional considerations and qualifications about the selected dietary and egg concentrations are presented below in the Discussion section.

All concentrations in bird diets or eggs mentioned below are expressed on dry-weight basis.

Selenium in Bird Diets

The dietary selenium EC$_{10}$ for mallards was reported as 4.87 mg/kg, with 95% CIs of 3.56 to 5.74 mg/kg based on reproductive toxicity (egg hatchability) (Ohlendorf 2003). The EC$_{10}$ of 4.87 mg/kg was estimated by fitting a logistic regression model (Figure 1). It should be noted, however, that the mallard studies used a “dry diet” that had about 10 percent moisture. Ohlendorf (2003) used the reported dietary selenium concentrations without adjustment for that moisture content, but an upward adjustment of the values (by 11 percent) would be appropriate to account for the moisture content of the duck diet.

In Adams et al. (2003), hockey-stick regression was used to model relationships between egg selenium concentrations and adverse effects in order to derive toxicity thresholds, such as EC$_{10}$ values. Hockey-stick regression is a model that has been used elsewhere to define a threshold when an underlying background level of response is unrelated to the dose (see Adams comments in Attachment B). Thus, such a model may be relevant to naturally occurring elements that are essential to birds and a wide variety of other organisms and particularly useful for elements such as selenium, which has a narrow range between levels that are essential and those that are toxic to birds so that variance around the inflection point (threshold) in the model is small. As shown in Figure 2 below, a threshold clearly
Figure 1. Mallard egg hatchability vs control as a function of selenium concentration in diet.

Figure 2. Hockey stick regression of laboratory mallard duckling mortality versus dietary selenium.
appears to exist when dietary selenium is plotted versus duckling mortality (which incorporated the cumulative effects of fertilization success and hatchability). The inflection point occurs at a dietary selenium concentration of 3.9 mg/kg. (The Discussion section below describes uncertainty around the inflection point.) The predicted EC\textsubscript{10} is 4.4 mg/kg (just slightly above the inflection point) and the 95% CI around the predicted EC\textsubscript{10} ranges from 3.8 to 4.8 mg/kg. The predicted EC\textsubscript{10} of 4.4 mg/kg is slightly lower than Ohlendorf’s (2003) EC\textsubscript{10} of 4.9 mg/kg, and the 95% CI is narrower using hockey stick regression than when using logistic regression.

Selenium in Bird Eggs

Similar to the dietary values calculated by Ohlendorf (2003) for reproductive toxicity for mallards, the EC\textsubscript{10} in eggs was reported as 12.5 mg/kg, with 95% CIs of 6.4 to 16.5 mg/kg (Figure 3). The EC\textsubscript{10} of 12.5 mg/kg was estimated by fitting a logistic regression model to the results of the six laboratory studies with mallards.

As noted in Table 2, the EC\textsubscript{10} for duckling mortality, as reported in Adams et al. (2003), ranged from 12 to 16 mg/kg (see Adams comments in Attachment B). These EC\textsubscript{10} values are based on a synthesis of laboratory studies in which the final endpoint was duckling mortality (the same effects data used in the dietary EC\textsubscript{10} evaluation with hockey-stick regression above) and the range of EC\textsubscript{10} values reflects different statistical approaches for analyzing the data. An adaptation from Figure 3 in Adams et al. (2003) is provided below (Figure 4), with the 95% CI included. As shown, the inflection point occurs at an egg selenium concentration of 9.8 mg/kg, with a predicted EC\textsubscript{10} comparable to that derived by Ohlendorf (2003).

(See Discussion for comments concerning uncertainty around the inflection point.) However, the 95% CI using hockey-stick regression is much narrower (9.7 to 13.6 mg/kg) than that derived by Ohlendorf using logistic regression (6.4 to 16.5 mg/kg). Given that there is a clear egg-selenium threshold at which effects begin to be observed, a unimodal model, such as logistic regression, may result in exaggerated confidence intervals, particularly in the tails.

Discussion

Additional discussion is presented below concerning the basis for selection of threshold values, uncertainty surrounding the hockey-stick regression inflection points, hormetic effects of selenium, and other qualifications and points discussed during the Panel meeting in November, as reflected in comments from Panel members (Attachment B).

Basis for Selection of Threshold Values

The Science Panel can choose a scientifically-based threshold value or acceptable “benchmark” concentration based on the consensus confidence limits described by analysis of available data (presented above), but ultimately, a choice of numbers from within the consensus confidence limits for regulatory purposes is not a scientific decision. Choices of a specific number or numbers from within those confidence ranges are philosophical/legal decisions that depend on how precautionary the State of Utah wants to be (a matter of philosophy) and on how much potential for legal liability the State is comfortable with exposing itself to. The key decision the State must make is whether they want to regulate to a “NEC” (no effects concentration, which is not the same as a NOEC [no observed effects
Figure 3. Mallard egg hatchability vs control as a function of selenium concentration in eggs.

Figure 4. Hockey stick regression of laboratory mallard duckling mortality versus egg selenium.
concentration]) standard or to some version of a “tolerably toxic” standard such as an EC$_{10}$, an EC$_{20}$, or an EC$_{05}$, etc.

Conceptually, a benchmark concentration is defined as the location on the exposure-response curve that is the threshold between absence and presence of a given effect or endpoint (i.e., the threshold between an EC$_{00}$ and an EC$_{01}$ concentration [see: www.epa.gov/ecotox/ecossl/pdf/ecossl_attachment_3-2.pdf; p. A-6]). Benchmark concentrations are estimated as the lower 95 percent confidence boundary on the EC$_{10}$ (see: Meister and Van Den Brink [2000], pp. 114-116 in particular; and USEPA [2000]).

Uncertainty Surrounding the Hockey-Stick Regression Inflection Points

To determine the inflection point between the hockey-stick “blade” and “handle”, or any parameter in the model, initial parameter values are input to the software program SPlus® and an iterative technique is used to search for more exact parameter values that will minimize the sum of squared deviations between the observed effects data and effects values predicted by the model. Variance in the estimate of the inflection point value is affected by the spacing of the measured X values as well as the scatter or trend in Y values in the vicinity of the estimated inflection point. If, for example, there are few measured dietary selenium concentrations near the predicted inflection point, the uncertainty in the location of the inflection point will be greater because it will be difficult to determine the exact concentration at which the inflection point occurs (i.e., it could be between two of the measured values). Uncertainty around the predicted Y (EC) values at the predicted inflection point is affected by the number of Y values and the scatter of the Y values at that particular X value (which, when calculating the confidence interval around Y, is assumed to be estimated without error). Thus, both the spacing of the measured X values and the variance in the response variable affects the uncertainty around the inflection point. The tighter spacing and less ambiguous effects response after the inflection point causes the 95% CI around the dietary selenium-based inflection point (3.0 to 4.9 mg/kg) to be narrower than that for the egg selenium-based inflection point (6.4 to 14.9 mg/kg).

However, although there is uncertainty surrounding the inflection point, use of the best estimate of the inflection point results in the best fit of the regression model to the data. In Figure 4, for example, if the inflection point occurred at either end of the 95% CI of egg selenium concentration (6.4 to 14.9 mg/kg dry wt.) one can easily visualize that the fit of the regression to the data points above the inflection point would not pass through the measured values in the same way.

Hormetic Effects of Selenium

Consideration of the hormetic effects of selenium may result in lowering of thresholds (for hormetic substances and endpoints one has to distinguish between valid control responses and hormetic deficiency responses before a valid baseline to compare toxic responses against can be identified). The hormetic bias in the data used for the Ohlendorf (2003) regressions has not yet been fully considered by the Science Panel. If such consideration were to result in changes, those changes could only be in the direction of a downward shifting of the threshold confidence limits. (For example, preliminary unpublished analyses that adjusted for hormetic effects in the mallard data yielded a revised EC$_{10}$ for diet of
4.1 mg/kg, with a 95% CI of 1.3 to 5.8 mg/kg, and a revised EC_{10} for eggs of 9.22 mg/kg, with a 95% CI of 4.11 to 13.07 mg/kg.

Other Qualifications and Points Discussed

The Panel also discussed the following additional qualifications and points relative to toxicity threshold values:

- Applicability of laboratory data to field situations is not certain (note that field data were retained in compilation of egg-selenium concentrations in Table 2), and it is important to collect site-specific field data on selenium concentrations in bird eggs (e.g., current data gathering effort at the Great Salt Lake).

- Applicability of mallard data to species at Great Salt Lake is uncertain, because relative sensitivity of all species nesting there is not known.

- Threshold values discussed are for the hatchability endpoint (based on diet and avian egg) but non-reproductive adverse effects endpoints (e.g., avian blood endpoint) also may be important. However, interpretive values for selenium in avian blood are not available; although selenium concentrations in blood indicate exposure of the birds, that endpoint is not considered useful for setting a water quality standard.

- Phalaropes are seasonally numerous at the Great Salt Lake and should be added to the list of species to be monitored because they represent species with a feeding rate that is a large percentage of body weight (affecting energy consideration in determining wildlife criterion).

Recommended Next Steps

The issues summarized in this technical memorandum should be discussed/considered further by the Panel, particularly to refine the selection of threshold values for bird diets and eggs with respect to effects documented elsewhere (in field and laboratory studies) and considering the results being developed through research at the Great Salt Lake. In parallel, it will be important to know what level of protective the State and EPA will apply in the development of the site-specific standard for selenium on the Great Salt Lake (i.e., EC_{20}, EC_{10}, EC_{05}, etc.) so that the Science Panel can most effectively make recommendations that can be applied toward that purpose.

References

TABLE 1
Diet Concentrations

<table>
<thead>
<tr>
<th>mg/kg</th>
<th>Approach or Site</th>
<th>Effects</th>
<th>Species</th>
<th>Reference(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.87 (CI 3.56 - 5.74)</td>
<td>Synthesis of lab data</td>
<td>Hatchability in mallards (10% effect level/95% confidence boundaries)</td>
<td>Mallard</td>
<td>Ohlendorf 2003</td>
</tr>
<tr>
<td>4.4 (CI 3.8 - 4.8)</td>
<td>Synthesis of lab data</td>
<td>EC\textsubscript{10} for duckling mortality</td>
<td>Mallard</td>
<td>Bill Adams analyses presented in Attachment B</td>
</tr>
<tr>
<td>3.85 - 7.7 (diet based on 10% moisture)</td>
<td>Lab</td>
<td>Reduced hatching success in mallards (33% at 7.7 µg/g); reduced growth and weight in hatchlings</td>
<td>Mallard</td>
<td>Stanley et al. 1996</td>
</tr>
<tr>
<td>7.7 (diet based on 10% moisture)</td>
<td>Lab</td>
<td>Reduction in number of surviving mallard ducklings produced per female</td>
<td>Mallard</td>
<td>Stanley et al. 1996</td>
</tr>
<tr>
<td>8.8 4.4/6.2 (diet based on 10% moisture)</td>
<td>Lab</td>
<td>8.8 - LOAEL, 4.4 - NOAEL, 6.2 - Geometric Mean Reduction (17%) in survival of mallard ducklings; mean decrease (43%) in number of 6-day-old ducklings</td>
<td>Mallard</td>
<td>Heinz et al. 1989</td>
</tr>
<tr>
<td>6</td>
<td>Lab</td>
<td>Adverse effect on body condition of male American kestrels</td>
<td>American Kestrels</td>
<td>Yamamoto and Santolo, 2000</td>
</tr>
<tr>
<td>7.7 - 8.8 (diet based on 10% moisture)</td>
<td>Lab</td>
<td>Dietary threshold of teratogenic effects in mallards; above upper threshold, rate of deformity rises sharply</td>
<td>Mallard</td>
<td>Stanley et al. 1996</td>
</tr>
<tr>
<td>7.7 - 8.8 (diet based on 10% moisture)</td>
<td>Lab</td>
<td>Dietary threshold of mallard duckling mortality (parental exposure)</td>
<td>Mallard</td>
<td>Stanley et al. 1996</td>
</tr>
</tbody>
</table>

Note: Highlighted cells are the threshold values for bird diets identified by consensus of the Science Panel on November 30, 2006.
TABLE 2

Egg Concentrations

<table>
<thead>
<tr>
<th>mg/kg (dry wt.)</th>
<th>Approach or Site</th>
<th>Effects</th>
<th>Species</th>
<th>Reference(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.5 (CI 6.4 - 16.5)</td>
<td>Synthesis of lab data</td>
<td>Hatchability in mallards (10% effect level/95% confidence boundaries)</td>
<td>Mallard</td>
<td>Ohlendorf 2003</td>
</tr>
<tr>
<td>10</td>
<td>Synthesis of lab data</td>
<td>NOAEL</td>
<td>Mallard</td>
<td>Adams et al. 2003</td>
</tr>
<tr>
<td>12 - 16</td>
<td>Synthesis of lab data</td>
<td>EC$_{10}$ for duckling mortality</td>
<td>Mallard</td>
<td>Adams et al. 2003</td>
</tr>
<tr>
<td>9</td>
<td>Synthesis of lab data</td>
<td>Impaired clutch viability (8.2% effects level)</td>
<td>Mallard</td>
<td>Lam et al. 2005</td>
</tr>
<tr>
<td>8.2 (or 7.3) (egg based on 73% moisture)</td>
<td>Field</td>
<td>16% depression in egg viability (7.3 in paper)</td>
<td>Spotted Sandpiper</td>
<td>Harding et al. 2005</td>
</tr>
<tr>
<td>6</td>
<td>Synthesis of field data</td>
<td>Threshold (3% effect level) of hatchability</td>
<td>Stilts</td>
<td>Skorupa, 1998; Skorupa, 1999</td>
</tr>
<tr>
<td>5.1 (egg based on 78.4% moisture)</td>
<td>Field</td>
<td>15% depression in egg viability</td>
<td>American dipper</td>
<td>Harding et al. 2005</td>
</tr>
</tbody>
</table>

Note: Highlighted cells are the threshold values for bird eggs identified by consensus of the Science Panel on November 30, 2006.
Comments on December 8, 2006, Draft Technical Memorandum
Comments of Bill Adams

Following are comments on Harry Ohlendorf’s draft technical memorandum to the Great Salt Lake Science Panel entitled Threshold Values for Selenium in Great Salt Lake: Selections by the Science Panel (December 8, 2006).

Selenium in Bird Diets

As noted in the draft memorandum, the mallard studies used in Ohlendorf (2003) as the basis for a dietary selenium EC10 in birds was based on a “dry diet” containing about 10% moisture. Although the moisture content of the mallard diet was low, we recommend that standard convention should be used to properly adjust the dietary selenium concentrations to a dry weight basis. The equation for the wet weight-to-dry weight conversion is included in Attachment 1 to this memorandum.

In Adams et al. (2003), hockey-stick regression was used to model relationships between egg selenium concentrations and adverse effects in order to derive toxicity thresholds, such as EC10 values. Hockey-stick regression is a model that has been used to define a threshold when an underlying background level of response is unrelated to the dose. Thus, such a model may be relevant to naturally occurring elements that are essential to birds and a wide variety of other organisms and particularly useful for elements such as selenium, which has a narrow range between levels that are essential and levels that are toxic to birds so that variance around the inflection point (threshold) in the model is small. As shown in Figure 1 below, a threshold clearly appears to exist when dietary selenium is plotted versus duckling mortality (which incorporated the cumulative effects of fertilization success and hatchability). The inflection point occurs at a dietary selenium concentration of 3.9 mg/kg dry wt. (please see discussion at end of comments concerning uncertainty around the inflection point). The predicted EC10 is 4.4 mg/kg dry wt. (just slightly above the inflection point) and the 95% confidence interval around the predicted EC10 ranges from 3.8 to 4.8 mg/kg dry wt. The predicted EC10 of 4.4 mg/kg dry wt. is slightly lower than Harry Ohlendorf’s EC10 of 4.9 mg/kg dry wt., but the 95% confidence interval is narrower using hockey stick regression.

Selenium in Bird Eggs

As noted in Table 2 of the draft memorandum, the EC10 for duckling mortality, as reported in Adams et al. (2003), ranged from 12-16 mg/kg dry wt. These EC10 values are based on a synthesis of laboratory studies in which the final endpoint was duckling mortality (the same effects data used in the dietary EC10 evaluation above) and the range of EC10 values reflects different statistical approaches for analyzing the data. An adaptation from Figure 3 in Adams et al. (2003) is provided below, with the 95% confidence interval included. As
shown, the inflection point occurs at an egg selenium concentration of 9.8 mg/kg with a predicted EC10 comparable to that derived by Harry Ohlendorf (please see discussion at end of comments concerning uncertainty around the inflection point). However, the 95% confidence interval using hockey stick regression is much narrower (9.7 to 13.6 mg/kg dry wt.) than that derived by Harry using logistic regression (6.4-16.5 mg/kg dry wt.). Given that there is a clear egg selenium threshold at which effects begin to be observed, a unimodal model, such as logistic regression, may result in exaggerated confidence intervals, particularly in the tails.

Uncertainty Surrounding the Hockey-Stick Regression Inflection Points

To determine the inflection point between the hockey-stick “blade” and “handle”, or any parameter in the model, initial parameter values are input to the software program SPlus® and an iterative technique is used to search for more exact parameter values that will minimize the sum of squared deviations between the observed effects data and effects values predicted by the model. Variance in the estimate of the inflection point value is affected by the spacing of the measured X values as well as the scatter or trend in Y values in the vicinity of the estimated inflection point. If, for example, there are few measured dietary selenium concentrations near the predicted inflection point, the uncertainty in the location of the inflection point will be greater because it will be difficult to determine the exact concentration at which the inflection point occurs (i.e., it could be between two of the measured values). Uncertainty around the predicted Y (EC) values at the predicted inflection point is affected by the number of Y values and the scatter of the Y values at that particular X value (which, when calculating the confidence interval around Y, is assumed to be estimated without error). Thus, both the spacing of the measured X values and the variance in the response variable affects the uncertainty around the inflection point. The tighter spacing and less ambiguous effects response after the inflection point causes the 95% confidence interval around the dietary selenium-based inflection point (3.0 to 4.9 mg/kg dry wt.) to be narrower than that for the egg selenium-based inflection point (6.4 to 14.9 mg/kg dry wt.).

However, although there is uncertainty surrounding the inflection point, use of the best estimate of the inflection point results in the best fit of the regression model to the data. In Figure 2, for example, if the inflection point occurred at the either end of the 95% confidence interval of egg selenium concentration (6.4 to 14.9 mg/kg dry wt.) once can easily visualize that the fit of the regression to the data points above the inflection point would not pass through the measured values in the same way.
Figure 1. Hockey stick regression of laboratory mallard duckling mortality versus dietary selenium.

- Empirical data
- Predicted mortality
- 95% confidence interval

Inflection point = 3.9 mg/kg
EC10 (predicted) = 4.4 mg/kg
EC10 (LCL) = 3.8 mg/kg
EC10 (UCL) = 4.8 mg/kg

Figure 2. Hockey stick regression of laboratory mallard duckling mortality versus egg selenium.

- Empirical data
- Predicted mortality
- 95% confidence interval

Inflection point = 9.8 mg/kg
EC10 (predicted) = 11.5 mg/kg
EC10 (LCL) = 9.7 mg/kg
EC10 (UCL) = 13.6 mg/kg
ATTACHMENT 1

WET WEIGHT-TO DRY WEIGHT CONVERSION FOR DIETARY SELENIUM CONCENTRATIONS IN MALLARD STUDIES

Dry Weight Concentration = \frac{\text{Wet Weight Concentration}}{f_{\text{solids}}}

Where: \(f_{\text{solids}} \) = fraction solids in diet (i.e., 0.9 in a diet containing 10% moisture)
Comments of Anne Fairbrother

I realize that I am late (the last?) on providing comments and feedback on the report you pulled together from our last Salt Lake City meeting on threshold values. I was sort of hoping to see the data from Bill Adams’ re-analysis of the dose-response before replying... Absent that, here are my thoughts and comments.

I think you did an appropriate job pulling together what was discussed at the meeting in regard to diet and egg threshold levels. However, the more I look at the data in regard to selenium uptake and effects, the more convinced do I become that we are dealing with a threshold phenomenon, likely because of the essential nature of the element. I do believe that the mean value for the EC10 that was selected for both endpoints is likely to remain pretty much the same regardless of what dose-response model is used, but the standard error about the mean may be different. Likely it will be smaller when using a threshold model since a logistic model tends to spread out the CI’s at its tails. So, for now, I am willing to approve the document as a report of what was discussed at the meeting, but not as a final say on what we have agreed to for the EC10 and its confidence intervals.
Comments of Theresa Presser

Suggested additions to threshold discussion write-up of 12/8/06:

1) Page 1: Note that compilation of data for consideration was adapted from Presser and Luoma (2006), table 15.

2) Page 1: Note that in addition to laboratory data, a compilation of field data for egg concentrations was retained.

3) Page 1: Note that any final determination must take into account site-specific data currently being generated by the Great Salt Lake research effort.

4) Page 2 wording: “The panel agreed by consensus that the 95% CIs on mean selenium concentrations in mallard diet and eggs would be reasonably protective for birds nesting at the Great Salt Lake, and the range of values included the concentrations proposed by various panel members for consideration. Rational supporting selection of the 95% CIs is provided by the previous technical memorandum and through discussion at the panel meeting.”

 a) Did you mean here the 95% CIs on the mean EC10 for hatchability?

 b) The phrase “would be reasonably protective for birds nesting at the Great Salt Lake” does not adequately convey all parts of the extensive discussion that took place. I did not perceive that a consensus had been reached as to protectiveness, only that a consensus had been reached as to the interpretation of data from mallard lab experiments. Therefore, I suggest incorporating into the wording of a summary statement the following qualifications and points that were discussed at the meeting:

 1) Applicability of lab data to field situations (note retention of compilation of field data in table 2 and current data gathering effort at the Great Salt Lake; points 2 and 3 listed above)

 2) Applicability of mallard data to species at Great Salt Lake (sensitivity issue)

 3) Applicability of hatchability endpoint (diet and avian egg) and non-reproductive adverse effects endpoints (e.g., avian blood endpoint)

 4) Level of protection and precautionary regulation as exemplified by benchmark concentration regulation. Specifically add excerpt from page 8 of 11/28/06 memo as clarification of 95% CI: “Conceptually, a benchmark concentration is defined as the location on the exposure-response curve that is the threshold between absence and presence of a given effect or endpoint, i.e., the threshold between an EC00 and an EC01 concentration (see: www.epa.gov/ecotox/ecoss/ pdf/ecoss_attachment_3-2.pdf; p. A-6)….. Benchmark concentrations are estimated as the lower 95% confidence boundary on the EC10 (see: Meister, R., and P.J. Van Den Brink. 2000. The analysis of laboratory toxicity experiments. Pages 99-118 in T. Sparks (ed.), Statistics in Ecotoxicology. John Wiley & Sons, LTD, New York, NY: [pp 114-116 in particular]; and see: USEPA. 2000. Benchmark Dose Technical Guidance

5) Addition of phalarope to list of species to be monitored to represent species with a feeding rate that is a large percentage of body weight (energy consideration in determining wildlife criterion).

6) Potential lowering of thresholds through consideration of hormesis data (for hormetric substances and endpoints one has to distinguish between valid control responses and hormetric deficiency responses before a valid baseline to compare toxic responses against can be identified).

6) Table 1: “Bill Adams suggestion” needs to be documented as how his entry differs from entry #1 in table 1.
Comments of Joe Skorupa

In Table 1 I don’t believe the science panel wanted the value of 4.87 to be presented in bold type, only the confidence limits (for comparison see Table 2 where I think you have it the way the science panel intended).

Adjusting for 10% moisture would result in an 11% increase in the dietary values, not an upward adjustment of 10% as stated.

I didn’t feel like your draft write-up adequately conveyed our (sci. panel’s) discussion concerning the fact that, ultimately, a choice of numbers from within the consensus confidence limits is not a scientific decision. That confidence range is as far as science can bring us... choosing a specific number or numbers from within those confidence ranges are philosophical/legal decisions that depend on how precautionary the State of Utah wants to be (a matter of philosophy) and on how much potential for legal liability the State is comfortable with exposing itself to. The key decision the State must make is whether they want to regulate to a “NEC” (no effects concentration... which is not the same as a NOEC) standard or to some version of a “tolerably toxic” standard such as an EC-10, or EC-20, or EC-05 etc.

Finally, I think on the scientific side of things we would be remiss in our duty as experts not to include some discussion indicating that the issue of hormetic bias in the data used for the Ohlendorf (2003) regressions has not yet been fully considered by the science panel (at Bill Adams request to defer it so that he could preview Beckon’s SETAC presentation before I presented any of it to the panel... although it seemed to be acceptable to everyone to see Kennecott’s U. of Wyoming presentation without any opportunity for anyone other than Bill A. to preview it... seems like a double standard to me), and that if such consideration were to result in changes, those changes could only be in the direction of a downward shifting of the threshold confidence limits.

For example, remember that the analysis that Brad Sample re-ran to adjust for hormetic effects in the mallard data yielded a revised EC-10 for diet of 3.7 ppm ww [4.1 ppm dw] with a 95% confidence interval of 1.15 - 5.18 ppm ww [1.3 - 5.8 ppm dw] and a revised EC-10 for eggs of 9.22 ppm dw with a 95% confidence interval of 4.11 - 13.07 ppm dw.