Category: Northern Utah Air Pollution Current & Ongoing Studies

  • The Salt Lake Regional Smoke, Ozone and Aerosol Study (SAMOZA)

    The University of Washington, Utah State University and the University of Montana will conduct a detailed study of ozone (O3) and fine particulate matter (PM2.5) in the Salt Lake Valley (SLV). Using new VOC observations, plus existing measurements of NOx, CO and PM2.5, they will use a variety of analyses to understand O3 formation and…

  • Improving Smoke Detection and Quantifying the Wildfire Smoke Impacts on Local Air Quality Using Modeling and Machine Learning Techniques

    Though it can be easy to tell that wildfire smoke has negative impacts on urban air quality, there is no tool to quantitatively measure wildfire impacts, nor to identify whether exceedance days are due to wildfire smoke or other emissions. The first scope of this work will develop a new plume rise model to estimate…

  • Improved Vegetation Data for the Biogenic Emission Inventory of Wasatch Front

    The goal of this project is to improve numerical predictions of regional ozone and aerosol distributions in the Wasatch Front by developing more accurate estimates of biogenic volatile organic carbon (BVOC) emissions for the urban areas within the Northern Wasatch Front. Specifically, this project will upgrade modeled MEGAN (Model of Emissions of Gasses and Aerosols…

  • Particulate Chloride in the Urban Environment

    The University of Utah will conduct a study intended to significantly reduce uncertainties regarding the temporal, spatial, and particle size distributions of particulate chloride. Through source apportionment, the study will also identify the dominant sources of this important halogen. These results will provide important emission inventory constraints for future air quality modeling efforts performed by…

  • Impacts of the Great Salt Lake on Summer Ozone Concentrations Along the Wasatch Front

    The University of Utah is conducting a study to determine the meteorological factors that contribute to elevated surface ozone near the Great Salt Lake. The core task for this project is to evaluate from ozone observations and meteorological observations and model analyses the timing of buildup in ozone in the southern Farmington Bay region and…

  • Development of a WRF-based Urban Canopy Model for the Greater Salt Lake City Area

    Brigham Young University will conduct a two-year project that will utilize state-of-the-science meteorological modeling with land use descriptions of the Great Salt Lake area to characterize impacts of urban growth on local meteorological conditions. Model methodology and usage will be documented so air quality modelers can use existing or self-developed future results for additional urban…

  • Vertical Ozone Profiles in the Uinta Basin and Validating Drones as an Air Measurement Platform

    The University of Utah will conduct vertical ozone profile measurements from ground level to the mid-stratosphere to develop a better understanding of ozone layers and evolution over Utah. Data collected by drones and balloons will provide information on the vertical distribution of ozone and nitrous dioxide (NO2) among other gases. This data will be used…

  • Quantitative Attribution of Wildfires on Summertime Ozone Concentrations along the Wasatch Front

    Wildfires can significantly enhance summertime ozone and aerosol concentrations, which can degrade air quality and have adverse effects on human health. While air quality has improved across much of the U.S., the Western U.S. has seen a recent increase in wildfire activity. This project will assess the contribution of regional fires and long-range smoke transport…

  • Halogen Sources and their Influence on Winter Air Pollution in the Great Salt Lake Basin

    The Great Salt Lake Basin is meteorologically and chemically distinct from other regions in the U.S. It is subject to both persistent cold air pools in complex terrain that lead to winter air pollution and potentially large inputs of natural and anthropogenic sources of halogen species. This project will investigate the role of these halogen…

  • Characterizing Air Quality Impacts from Exceptional Events along the Wasatch Front

    This study, led by researchers at BYU, will use particulate matter (PM) sampling to identify regional dust sources that impact local air quality and public health, as well as model how dust sources might change in the future. Principal Investigators: Dr. Greg Carling (BYU) Funded by Science for Solutions Research Grant: $150,000

  • TRAX Air Quality Observation Project (Blue Line)

    The TRAX air quality project continues to measure PM2.5 and ozone from TRAX light rail trains, and will add measurements to the Blue line. All data is publicly available and posted in near real-time on the MesoWest website. Principal Investigators: Daniel Mendoza, Logan Mitchell, John Horel, John Lin (UU) Funded by legislative appropriation: $44,000

  • The Red Butte Canyon Air Mass Exchange and Pollution Transport Study

    The University of Utah will make measurements of vertical wind and aerosol profiles, as well as ozone and fine particulate matter (PM2.5) concentrations at the mouth of Red Butte Canyon in order to better understand air exchange in the Salt Lake Valley during wintertime PM2.5 events. Principal Investigators: Sebastian W. Hoch, Erik T. Crosman (UU)…

  • The Red Butte Canyon Ozone Network:
    Leveraging Existing Infrastructure to Probe Background Concentrations, Canyon Flows, and Stratospheric Oxidant Exchange

    This study will deploy a number of ozone sensors at different distances up Red Butte Canyon to better understand natural gradients in ozone and how phenomena like large thunderstorms and valley drainage flows contribute to ozone concentrations in the Salt Lake Valley. Principal Investigators: Logan Mitchell, Ryan Bares, David Eiriksson (UU) Funded by Science for…

  • Understanding How Wood-Burning’s Contribution to Particulate Matter Concentrations Have Changed over Time

    Wood burning contributes to fine particulate matter (PM2.5) pollution in the Wasatch Front, and reducing the use of wood burning during pollution episodes has been the focus of many policy decisions. This study looks at patterns of temperature, heat deficit, and day of the week along with markers of woodsmoke and mandatory no-burn days, to…

  • Wasatch Front Ammonia and Chloride Observations (WaFACO)

    The objective of this study is to define the spatio-temporal behavior of atmospheric ammonia (NH3) and hydrochloric acid (HCl) along the Wasatch Front across both summer and winter seasons. This objective will be accomplished through three tasks developed in consultation with UDAQ and the U.S. EPA. These tasks include 1) networked NH3 and HCl observations,…

  • Aethalometer Study for Estimating Compliance
    with Wood-burning Ban

    The University of Utah Department of Chemical Engineering will collaborate with UDAQ to estimate the contributions of wood burning to wintertime PM2.5 levels using aethalometer data from four locations and from mobile aethalometer measurements. The goal of this study is to identify and understand levels of wood burning and compliance with wood-burning restrictions during the…

Back to top